
Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

This document outlines a few methods available in the Java String class. Although the String class
has some class (static) methods, the ones discussed here are instance (non-static) methods, and
thus need to be called with an instance of the String class. For example, we cannot call the String
class method length() by invoking “String.length()”. We must first create an instance of the
String class. This is shown in the code below. In line 1, we create an instance of the String class
with an identifier, greeting, and then in line 2 use the greeting object to call the length()
method.

1
2
String greeting = "Hello World!";
int len = greeting.length();

The String class methods below have been placed in an order that allows a step-by-step explanation of
the concepts required to understand how strings work in most high-level (3rd generation) programming
languages. If you are unfamiliar with how strings are commonly handled in computers, it is highly
recommended that you read through this document in the order it is presented first. Once you have a good
understanding of strings, more concise and complete documentation, such as the online Java
documentation provided by Oracle, will likely be a more convenient reference. The URL for Oracle’s
Java 8 String class documentation at time of writing is available at the URL:

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

char charAt(int index)
This method returns the character (char) value at the specified index.

Consider the following diagram representing “Hello World!” stored as a String.

Character Indexes

For this diagram, each character in the string has been separated into its own box, and the index of
the character in the string is written above each character. There are 12 characters in the string, and
the indexes range from 0 through 11. Because indexes are zero-based, the length of a string will
always be one greater than the last index.

Using the charAt Method

The charAt method returns the character at the index that is given as a parameter to the method. As
an example, for the String “Hello World!”, charAt(0) will return the character “H”,
charAt(1) will return the character “e”, and so on.

The Space Character

It is important to realize that index 5 in the string is not “empty” – it contains the “space” character,
which is represented by the ASCII (and Unicode) value of 0x20 (which has a denary value of 32).
Thus, charAt(5) will return the space character.

Page 1 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

int length()
This method returns the number of characters in a String.

Using the length method

After executing the following code:

1
2
String greeting = "Hello World!";
int len = greeting.length();

The integer variable len will contain the value 12 because there are twelve characters in the string
greeting. Note that every character, including the “space” character and punctuation is counted.
Although the length is 12, there is no character with index 12. The indexes for the characters in the
string run from 0 to 11, as shown in the following diagram.

Using the length method to Iterate Through a String

If we wish to loop through all the characters in a string using a for loop, we would initialize the
loop variable to 0 (the lowest index) and loop up to, but not including the length of the string. If the
string identifier is “greeting”, the loop condition will be “i < greeting.length()”.
Finally, we increment the loop counter by 1 with each iteration. Thus, to loop through each character
in a string, our loop would look something like:

1
2
3
4

for(int i = 0; i < greeting.length(); i++) {
 char c = greeting.charAt(i);
 // more code
}

Using the length method to Iterate Through a String Backwards

There are a number of reasons we may wish to loop backwards over the string. To do so, we would
initialize the loop variable to the index of the last character in the array. Notice that the value
returned by the length is one greater than the index of the last element. We thus need to initialize
the loop variable to “greeting.length - 1”. Then we will want to include 0 as the final
element, and thus the “<” operator must change to the “>=”, giving us a loop condition of
“i >= 0”. Finally, we are counting down so will need to decrement our loop counter by 1 with
each iteration. To loop through a string backwards, our loop will look something like:

1
2
3
4

for(int i = greeting.length() - 1; i >= 0; i--) {
 char c = greeting.charAt(i);
 // more code
}

Page 2 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

Exercise 1:

Write a method named printVertically that takes a String parameter and uses the
String class methods charAt and length to output the parameter to the console vertically.
For example, the statement “printVertically("Hello");” would produce the
following output:

H
e
l
l
o

The solution to this exercise is at the end of the document.

String substring(int beginIndex, int endIndex)
This method makes a copy of a specified part of the String.

This method is overloaded; find a description of the single-parameter substring method below.

Using the substring method

This method is mostly intuitive, however, there is one thing you might find a little bit strange. That is
the new string object contains the letter at the beginIndex, but does not include the letter at the
endIndex.

Let us look at an example.

String original = "gigantic";
String shorter = original.substring(3, 6);

Remember that indexes for a string start at 0, so if you count starting from zero, the character with
index 3 is the letter “a”. Then continue to count and you will find the character at index 6 is the
second letter “i”. Now the string is cut to include the letter at index 3 and exclude the letter at index
6. Thus, a reference to the resulting string “ant” is stored in the variable named shorter. The
diagram below shows this. Take special note of the indexes used to reference the start and end of the
substring.

Note that the original string is unchanged.

Page 3 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

Using the substring Method to Obtain a Single Character as a String

If you wish to get the character at a particular index returned as type char, you can use the String
method charAt, but if you want a single character returned as type String, you can use the
substring method by cutting from the index to the index plus one. Consider the following code.

String word = "gigantic";
int index = 4;
String letter = word.substring(index, index+1);

This code will set letter to a String containing the single character “n”. The results of
executing this code is represented in the diagram, below.

Using the substring Method to Obtain then Tail of a String

If we wished to cut to the end of the string, we can use the single-parameter substring method
(described below); however, it is useful to understand how this would work with the this two-
parameter version that we are discussing here.

Consider the following code.

String original = "gigantic";
String shorter = original.substring(3, original.length());

In this case, the call to “original.length()” will return a value of 8. Notice that the indexes of
the string “gigantic” only run from 0 through 7. There is no index 8 in the String. This does
not cause an error because the method substring does not include the final index when it copies
the string. This is shown diagrammatically, below.

Page 4 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

String substring(int beginIndex)
This method makes a copy of a part of the String starting at beginIndex and ending at the end
of the original string.

This method is overloaded. The two-parameter substring method was described above, and
should be well understood before reading about this version.

Using the substring Method to Obtain then Tail of a String (Revisited)

This method is equivalent to the two-parameter substring method, except that it will always copy
the string until the end. Thus, given a string, s, the statements “s.substring(i)” and
“s.substring(i, s.length())” are equivalent.

For completeness, here is an example equivalent to the final example in the previous section.

String original = "gigantic";
String shorter = original.substring(3);

And the diagram from the previous section also applies here.

The code results in a reference to the string “antic” stored in the variable shorter. Again, the
original string is left unchanged.

Exercise 2:

Write a method named cutOffTail that takes a String parameter called s and an int
parameter called n, and uses only the String methods length and substring to return a
String that contains the original string, except with the last n characters removed. Example
test code and output are given below

Example Test Code

1
2
3

String s = "programming";
System.out.println(cutOffTail(s,4));
System.out.println(cutOffTail(s,8));

Example Test Code Output

program
pro

The solution to this exercise is at the end of the document.

Page 5 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

boolean equals(Object s)
The equals method compares a String object to another object that is given as a parameter. The
result is true if and only if the parameter is not null and is a String object that represents the
same sequence of characters as the object.

Why the Equality Operator (==) is Generally Not Used on Objects

We will explain the meaning of the above description of the equals method more thoroughly
below, but first it will help to understand why we usually cannot use the Java equality operator
(==) to compare objects, including String objects. Consider some example code.

1
2
3

String first = "homework";
String second = "homework";
String third = new String("homework");

The code above creates a structure in memory that is represented in the diagram below.

Java compilers are intelligent enough that they will try to conserve memory space. Since the Java
code sets both first and second to the same string literal value, “homework”, it saves memory
space to just create one copy of the string, and then save the reference to (location where to find)
that string in both first and second. In the diagram, the references are shown as arrows. The
arrows in both first and second point to the same string of characters.

The third line explicitly tells the compiler to create a new array of characters in memory containing
the string of characters “homework”. This is a separate string of characters from the ones
referenced by first and second, and the reference saved in third points to the new set of
characters.

For the code above, the following table contains two equality expressions are given and the value
that the expression evaluates to.

expression evaluates to

first == second true

first == third false

Since the reference stored in first and second are the same value (the arrows point to the same
string), the expression “first == second” will evaluate to true.

Since the reference stored in third is different from the reference stored in first (each arrow
points to a different location in memory), the expression “first == third” evaluates to
false. The equality operator only compares the reference values, it does not compare the
characters, so even if each and every character in the string is the same, the references are not, so
“first == third” will return false.

Page 6 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

The code and diagram from above is repeated here for further discussion.

1
2
3

String first = "homework";
String second = "homework";
String third = new String("homework");

How to Compare Objects Using the equals Method

If one wishes to actually compare the values stored in an object – in this case a String object – one
uses the equals method. Each class must define for itself what it means for two objects (instances
of the class) to be “equal”.

As it is defined in the String class, two objects of type String are considered equal if and only if
the length of the two strings are the same, and each character at each and every index within the
string is exactly the same. This includes each and every space character and punctuation character.

The equals method is case sensitive, meaning the character “A” is not equal to the character “a”.
For a case-insensitive comparison, there is a String class method equalsIgnoreCase.

The following table contains two different calls to the equals method, and the value that the
expression evaluates to (assuming the strings are defined as in the code and diagram given above).

expression evaluates to

first.equals(second) true

first.equals(third) true

Since the reference stored in first and second are the same value, obviously the call to method
equals will return true because the characters in the string will be the same.

For the expression “first.equals(third)”, the equals method will check each and every
character in the two separate memory locations. Since the length of each string of characters is the
same (equal to 8), and the character at each and every location is the same, the method will return
true.

Page 7 of 8

Computer Science – Java English name: ____________________

Document: String Class Methods ©2025 Chris Nielsen – www.nielsenedu.com

Solutions to the Exercises
Solution to Exercise 1:

Write a method named printVertically that takes a String parameter and uses the
String class methods charAt and length to output the parameter to the console vertically.
For example, the statement “printVertically("Hello");” would produce the
following output:

H
e
l
l
o

A possible solution to this exercise follows:

1
2
3
4
5

public static void printVertically(String s) {
 for(int i = 0; i < s.length(); i++) {
 System.out.println(s.charAt(i));
 }
}

Solution to Exercise 2:

Write a method named cutOffTail that takes a String parameter called s and an int
parameter called n, and uses only the String methods length and substring to return a
String that contains the original string, except with the last n characters removed. Example
test code and output are given below

Example Test Code

1
2
3

String s = "programming";
System.out.println(cutOffTail(s,4));
System.out.println(cutOffTail(s,8));

Example Test Code Output

program
pro

A possible solution to this exercise follows:

1
2
3

public static String cutOffTail(String s, int n) {
 return s.substring(0, s.length()-n);
}

Page 8 of 8

